Asymmetric learning vector quantization for efficient nearest neighbor classification in dynamic time warping spaces
نویسندگان
چکیده
The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the most popular approaches in time series classification. This method suffers from high storage and computation requirements for large training sets. As a solution to both drawbacks, this article extends learning vector quantization (LVQ) from Euclidean spaces to DTW spaces. The proposed LVQ scheme uses asymmetric weighted averaging as update rule. Empirical results exhibited superior performance of asymmetric generalized LVQ (GLVQ) over other state-of-the-art prototype generation methods for nearest neighbor classification.
منابع مشابه
Warped-Linear Models for Time Series Classification
This article proposes and studies warped-linear models for time series classification. The proposed models are time-warp invariant analogues of linear models. Their construction is in line with time series averaging and extensions of k-means and learning vector quantization to dynamic time warping (DTW) spaces. The main theoretical result is that warped-linear models correspond to polyhedral cl...
متن کاملTime Series Classification Challenge Experiments
This paper describes a comparison of approaches for time series classification. Our comparisons included two different outlier removal methods (discords and reverse nearest neighbor), two different distance measures (Euclidean distance and dynamic time warping), and two different classification algorithms (k nearest neighbor and support vector machines). An algorithm for semi-supervised learnin...
متن کاملAdaptation of Prototype Sets in On-line Recognition of Isolated Handwritten Latin Characters
Results on a comparison of adaptive recognition techniques for on-line recognition of handwritten Latin alphabets are presented. The emphasis is on ve adaptive classiication strategies described in this paper. The strategies are based on rst generating a user-independent set of prototype characters and then modifying this set in order to adapt it to each user's personal writing style. The initi...
متن کاملDynamic time warping constraint learning for large margin nearest neighbor classification
Nearest neighbor (NN) classifier with dynamic time warping (DTW) is considered to be an effective method for time series classification. The performance of NN-DTW is dependent on the DTW constraints because the NN classifier is sensitive to the used distance function. For time series classification, the global path constraint of DTW is learned for optimization of the alignment of time series by...
متن کاملExperiments with Adaptation Methods in On-line Recognition of Isolated Latin Characters
The purpose of this paper is to summarize our work on adaptive on-line recognition methods for handwritten characters. Reports on the work have been published in various conference proceedings and book chapters. As each publication covers only some specific part of our work, it is hard to see the whole picture and get a good overview of the whole work. Instead of trying to explain in detail all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 76 شماره
صفحات -
تاریخ انتشار 2018